libNeuroML Documentation
Release 0.2.45

libNeuroML authors and contributors

Oct 01, 2018

Contents

Introduction 1
L1 NeuroML o e e e 1
1.2 Serialisations L e e e e 2
Installation 3
2.1 Requirements v v vt e 3
2.2 Install libNeuroML viapip o o e 3
2.3 Install using a local copy of libNeuroML source 4
24 Runanexample L e 4
2.5 UnIttestS . . . o v v vt e e e e e e e e e e e e 4
Examples 5
3.1 Creating a NeuroML morphology e 5
3.2 Loading and modifying afile e e e 7
3.3 Buildinganetwork L L e e e e 8
34 Buildinga3Dnetwork e 10
3.5 Tonchannels L e e e 12
3.6 PyNNmodels. o e 13
37 0 SYNAPSES . v e 14
3.8 Working with JSON serialization 0 i e e e e 15
3.9 Working with arraymorphs oL 17
3.10 Working with Izhikevich Cells 0 o 18
Useful tools 21
4.1 Neuronvisio e e e e e e 21
42 PyNN . . L e 21
4.3 Morphforge e e e e 21
4.4 CATMAID o e 21
45 NEURON. . . . e e e e e 22
4.6 MOOSE & Moogli e e 22
47 neuroConsStruCt o v L e 22
Developer documentation 23
5.1 Howtocontribute e e 23
5.2 Implementation of XML bindings for libNeuroML 0oL, 25
53 Indicesandtables L e e 26

CHAPTER 1

Introduction

This package provides Python libNeuroML, for working with neuronal models specified in NeuroML 2.

NOTE: libNeuroML targets NeuroML v2.0 (described in Cannon et al, 2014) not NeuroML v1.8.1 (Gleeson et al.
2010).

For a detailed description of libNeuroML see:

Michael Vella, Robert C. Cannon, Sharon Crook, Andrew P. Davison, Gautham Ganapathy, Hugh P. C. Robinson, R.
Angus Silver and Padraig Gleeson

libNeuroML and PyLEMS: using Python to combine procedural and declarative modeling approaches in
computational neuroscience

Frontiers in Neuroinformatics 2014, doi: 10.3389/fninf.2014.00038

PLEASE CITE THE PAPER ABOVE IF YOU USE libNeuroML!

1.1 NeuroML

NeuroML provides an object model for describing neuronal morphologies, ion channels, synapses and 3D network
structure.

Any dynamical components (channels, synapses, abstract cell models) in NeuroML v2.0 will have a definition “behind
the scenes” in LEMS. However, all NeuroML files specify is that “element segment will contain element distal with
attributes X, y, z, diameter. ..” or “element izhikevichCell will have attributes a, b, c...”.

For more on NeuroML 2 and LEMS see here.

http://neuroml.org/neuromlv2
http://www.neuroml.org/neuromlv2
http://journal.frontiersin.org/Journal/10.3389/fninf.2014.00079/abstract
http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1000815
http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1000815
http://journal.frontiersin.org/Journal/10.3389/fninf.2014.00038/abstract.
http://www.neuroml.org/neuromlv2
http://lems.github.io/LEMS/
http://www.neuroml.org/lems_dev

libNeuroML Documentation, Release 0.2.45

1.2 Serialisations

The XML serialisation will be the “natural” serialisation and will follow closely the NeuroML object model. The
format of the XML will be specified by the XML Schema definition (XSD file). Note: LEMS definitions of NeuroML
ComponentTypes (defining what izhikevichCell does with a, b, c...) and this XSD file (only saying the izhikevichCell
element requires a, b, c...) are currently manually kept in line.

Other serialisations have been developed (HDFS5, JSON, SWC). See Vella et al. 2014 for more details.

2 Chapter 1. Introduction

http://journal.frontiersin.org/Journal/10.3389/fninf.2014.00038/abstract

CHAPTER 2

Installation

2.1 Requirements

For the default XML serialization (saving NeuroML to XML files), only /xml is required:

’sudo pip install 1xml

Alternatively, on Linux you can use:

’sudo apt-get install python-1lxml

To use the other serializations (e.g. HDF5, JSON, see Vella et al. 2014) the following will also be required:

sudo apt-get install libhdf5-serial-dev
sudo pip install numpy

sudo pip install numexpr

sudo pip install jsonpickle

sudo pip install pymongo

sudo pip install simplejson

sudo pip install tables

See .travis.yml for the latest requirements on libraries etc.

2.2 Install libNeuroML via pip

’pip install libNeuroML

This is always the latest stable branch from GitHub.

http://journal.frontiersin.org/Journal/10.3389/fninf.2014.00038/abstract
https://github.com/NeuralEnsemble/libNeuroML/blob/master/.travis.yml

libNeuroML Documentation, Release 0.2.45

2.3 Install using a local copy of libNeuroML source

Install git and type:

git clone git://github.com/NeuralEnsemble/libNeuroML.git
cd libNeuroML

More details about the git repository and making your own branch/fork are here.

Use the standard install method for Python packages:

sudo python setup.py install

To use the latest development version of libNeuroML, switch to the development branch:

git checkout development
sudo python setup.py install

2.4 Run an example

Some sample scripts are included in neuroml/examples, e.g. :

cd neuroml/examples
python build_network.py

The standard examples can also be found here

2.5 Unit tests

To run unit tests cd to the directory ‘/neuoroml/test’ and use the python unittest module discover method:

’python -m unittest discover

If everything worked your output should look something like this:

Ran 55 tests in 40.1s

OK

Alternatively install and use nosetests:

nosetests -v

4 Chapter 2. Installation

http://rogerdudler.github.com/git-guide/
how_to_contribute.html
examples.html

CHAPTER 3

Examples

The examples in this section are intended to give in depth overviews of how to accomplish specific tasks with libNeu-
roML.

These examples are located in the neuroml/examples directory and can be tested to confirm they work by running the
run_all.py script.

Examples

* Examples

Creating a NeuroML morphology

Loading and modifying a file

Building a network

Building a 3D network

lon channels

— PyYNN models

Synapses

Working with JSON serialization

Working with arraymorphs

Working with Izhikevich Cells

3.1 Creating a NeuroML morphology

mmn

Example of connecting segments together to create a

(continues on next page)

libNeuroML Documentation, Release 0.2.45

(continued from previous page)

multicompartmental model of a cell.

mmn

import neuroml
import neuroml.writers as writers

p = neuroml.Point3DWithDiam(x=0,y=0,2z=0,diameter=50)
d = neuroml.Point3DWithDiam (x=50,y=0,2z=0,diameter=50)
soma = neuroml.Segment (proximal=p, distal=d)
soma.name = 'Soma'

soma.id = 0

Make an axon with 100 compartments:

parent = neuroml.SegmentParent (segments=soma.id)
parent_segment = soma

axon_segments = []

seg_id = 1

for i in range(100) :

p = neuroml.Point3DWithDiam (x=parent_segment.distal.x,
y=parent_segment.distal.y,
z=parent_segment.distal.z,
diameter=0.1)

d = neuroml.Point3DWithDiam (x=parent_segment.distal.x+10,
y=parent_segment.distal.y,
z=parent_segment.distal.z,
diameter=0.1)

axon_segment = neuroml.Segment (proximal = p,
distal = d,
parent = parent)

axon_segment.id = seg_id
axon_segment .name = 'axon_segment_' + str (axon_segment.id)

#now reset everything:
parent

neuroml . SegmentParent (segments=axon_segment.id)
parent_segment = axon_segment
seg_id += 1

axon_segments.append (axon_segment)

test_morphology = neuroml.Morphology ()
test_morphology.segments.append (soma)
test_morphology.segments += axon_segments
test_morphology.id = "TestMorphology"

cell = neuroml.Cell ()

cell.name = 'TestCell'

cell.id = 'TestCell'

cell .morphology = test_morphology

doc = neuroml.NeuroMLDocument (id = "TestNeuroMLDocument™)

(continues on next page)

Chapter 3. Examples

libNeuroML Documentation, Release 0.2.45

(continued from previous page)

doc.cells.append(cell)

nml_file = 'tmp/testmorphwrite.nml’
writers.NeuroMLWriter.write (doc,nml_file)
print ("Written morphology file to: "+nml_file)
Validate the NeuroML

from neuroml.utils import validate_neuroml2

validate_neuroml2 (nml_file)

3.2 Loading and modifying a file

mwn

In this example an axon 1is built, a morphology is loaded, the axon is
then connected to the loadeed morphology.

mmwn

import neuroml
import neuroml.loaders as loaders
import neuroml.writers as writers

fn = './test_files/Purk2M9s.nml'
doc = loaders.NeuroMLLoader.load (fn)
print ("Loaded morphology file from: "+£fn)

#get the parent segment:
parent_segment = doc.cells[0].morphology.segments|[0]

parent = neuroml.SegmentParent (segments=parent_segment.id)

#make an axon:

seg_id = 5000 # need a way to get a unique id from a morphology
axon_segments = []

for i in range (10):

p = neuroml.Point3DWithDiam(x=parent_segment.distal.x,
y=parent_segment.distal.y,
z=parent_segment.distal.z,
diameter=0.1)

d = neuroml.Point3DWithDiam (x=parent_segment.distal.x+10,
y=parent_segment.distal.y,
z=parent_segment .distal.z,
diameter=0.1)

axon_segment = neuroml.Segment (proximal = p,
distal = d,
parent = parent)

axon_segment.id = seg_id

(continues on next page)

3.2. Loading and modifying a file 7

libNeuroML Documentation, Release 0.2.45

(continued from previous page)

axon_segment .name = 'axon_segment_' + str (axon_segment.id)
#now reset everything:
parent = neuroml.SegmentParent (segments=axon_segment.id)
parent_segment = axon_segment
seg_id += 1
axon_segments.append (axon_segment)

doc.cells[0] .morphology.segments += axon_segments

nml_file = './tmp/modified_morphology.nml'

writers.NeuroMLWriter.write (doc,nml_file)

print ("Saved modified morphology file to: "+nml_file)

Validate the NeuroML
from neuroml.utils import validate_neuroml?2

validate_neuroml2 (nml_file)

3.3 Building a network

mown

Example to build a full spiking IaF network
through libNeuroML, save it as XML and validate it

mwn

from neuroml import NeuroMLDocument
from neuroml import IafCell

from neuroml import Network

from neuroml import ExpOneSynapse

from neuroml import Population

from neuroml import PulseGenerator
from neuroml import ExplicitInput

from neuroml import SynapticConnection
import neuroml.writers as writers

from random import random

nml_doc = NeuroMLDocument (id="TIafNet'™)

TafCell0 = IafCell (id="iaf0O",
Cc="1.0 nF",

thresh = "-50mv",
reset="-65mV",
leak_conductance="10 nSsS",
leak_reversal="-65mV")

(continues on next page)

Chapter 3. Examples

libNeuroML Documentation, Release 0.2.45

(continued from previous page)

nml_doc.iaf_cells.append(IafCell0)

IafCelll = IafCell(id="iafl",
Cc="1.0 nF",
thresh = "-50mV",
reset="-65mv",
leak_conductance="20 nSs",
leak_reversal="-65mV")

nml_doc.iaf_cells.append(IafCelll)
syn0 = ExpOneSynapse (id="syn0",
gbase="65ns",
erev="0mvV",
tau_decay="3ms")
nml_doc.exp_one_synapses.append (syn0)
net = Network (id="TafNet")
nml_doc.networks.append (net)
size0 = 5
popO = Population(id="TIafPopO",
component=IafCell0.1id,
size=size0)
net .populations.append (pop0)
sizel = 5
popl = Population(id="IafPopl",
component=IafCell0.1id,
size=sizel)
net.populations.append (popl)
prob_connection = 0.5
for pre in range (0,size0):
pg = PulseGenerator (id="pulseGen_2i"%pre,
delay="0ms",
duration="100ms",
amplitude=" nA"% (0.1lxrandom()))

nml_doc.pulse_generators.append (pg)

exp_input = ExplicitInput (target=" [51]"% (pop0.id, pre),
input=pg.id)

net.explicit_inputs.append (exp_input)
for post in range(0,sizel):

fromxx is used since from is Python keyword
if random() <= prob_connection:

syn = SynapticConnection (from_=" [21]1"% (pop0.id, pre),

(continues on next page)

3.3. Building a network

libNeuroML Documentation, Release 0.2.45

(continued from previous page)

synapse=syn0.id,
to="5s[%1]"% (popl.id,post))
net.synaptic_connections.append(syn)
nml_file = 'tmp/testnet.nml'
writers.NeuroMLWriter.write (nml_doc, nml_file)

print ("Written network file to: "+nml_file)

Validate the NeuroML
from neuroml.utils import validate_neuroml2

validate_neuroml2 (nml_file)

3.4 Building a 3D network

mn

Example to build a full spiking IaF network throught libNeuroML & save it as XML &,
—validate it

mown

from neuroml import NeuroMLDocument
from neuroml import Network

from neuroml import ExpOneSynapse
from neuroml import Population

from neuroml import Annotation

from neuroml import Property

from neuroml import Cell

from neuroml import Location

from neuroml import Instance

from neuroml import Morphology

from neuroml import Point3DWithDiam
from neuroml import Segment

from neuroml import SegmentParent
from neuroml import Projection

from neuroml import Connection

import neuroml.writers as writers
from random import random

soma_diam = 10
soma_len = 10
dend_diam = 2
dend_len = 10
dend_num = 10

def generateRandomMorphology () :

morphology = Morphology ()

(continues on next page)

10 Chapter 3. Examples

libNeuroML Documentation, Release 0.2.45

(continued from previous page)

def

p = Point3DWithDiam (x=0,y=0,2z=0,diameter=soma_diam)
d = Point3DWithDiam (x=soma_len,y=0, z=0,diameter=soma_diam)
soma = Segment (proximal=p, distal=d, name = 'Soma', id = 0)

morphology.segments.append (soma)
parent_seg = soma

for dend_id in range (0,dend_num) :

p = Point3DWithDiam(x=d.x,y=d.y,z=d.z,diameter=dend_diam)
d = Point3DWithDiam(x=p.x,y=p.y+dend_len,z=p.z,diameter=dend_diam)

dend = Segment (proximal=p, distal=d, name = 'Dend_=%i'%dend_id, id = 1l+dend_id)
dend.parent = SegmentParent (segments=parent_seqg.id)
parent_seg = dend

morphology.segments.append (dend)

morphology.id = "TestMorphology"

return morphology

run () :

cell_num = 10

Xx_size = 500
y_size = 500
z_size = 500

nml_doc = NeuroMLDocument (id="Net3DExample™)

syn0 = ExpOneSynapse (id="syn0", gbase="65nS", erev="0mV", tau_decay="3ms")
nml_doc.exp_one_synapses.append (syn0)

net = Network (id="Net3D")
nml_doc.networks.append(net)
proj_count = 0
#conn_count = 0
for cell_id in range(0,cell_num) :
cell = Cell (id="Cell %¢i"%cell_id)
cell.morphology = generateRandomMorphology ()
nml_doc.cells.append(cell)
pop = Population(id="Pop_ ¢i"%cell_id, component=cell.id, type="populationList

net .populations.append (pop)
pop.properties.append (Property (tag="color", wvalue="1 0 0"))

inst = Instance (id="0")
pop.instances.append (inst)

(continues on next page)

3.4.

Building a 3D network 11

libNeuroML Documentation, Release 0.2.45

(continued from previous page)

inst.location = Location(x=str(x_size*random()), y=str(y_sizexrandom()),
—z=str(z_sizexrandom()))
prob_connection = 0.5
for post in range (0,cell_num) :
if post is not cell_id and random() <= prob_connection:
from _pop = "Pop_%i"%cell_id
to_pop = "Pop_%i"%post

pre_seg_id = 0
post_seg_id = 1

projection = Projection(id="Proj_ ¢i"%proj_count, presynaptic_
—population=from_pop, postsynaptic_population=to_pop, synapse=syn0.id)

net.projections.append (projection)

connection = Connection (id=proj_count, \
pre_cell_id="%s[%1]"% (from_pop,0), \
pre_segment_id=pre_seqg_id, \
pre_fraction_along=random(),
post_cell_id="%s[%1]"% (to_pop,0), \
post_segment_id=post_seg_id,
post_fraction_along=random())

projection.connections.append (connection)

proj_count += 1

#net.synaptic_connections.append (SynapticConnection (from ="%s[%i]"
—~% (from_pop,0), to="%s[%1]"% (to_pop,0)))

#HE#AFH Write to file ######

nml_file = '"tmp/net3d.nml’
writers.NeuroMLWriter.write (nml_doc, nml_file)

print ("Written network file to: "+nml_file)

Validate the NeuroML
from neuroml.utils import validate_neuroml?2
validate_neuroml2 (nml_file)

run ()

3.5 lon channels

mmwn

Generating a Hodgkin-Huxley Ion Channel and writing it to NeuroML

mmwn

import neuroml

(continues on next page)

12 Chapter 3. Examples

libNeuroML Documentation, Release 0.2.45

(continued from previous page)

import neuroml.writers as writers

chan = neuroml.IonChannelHH(id='na',
conductance="10psS"',
species='na',

notes="This is an example voltage—gated Na channel")

m_gate = neuroml.GateHHRates (id='m', instances="'3")
h_gate = neuroml.GateHHRates (id='h', instances='1")

m_gate.forward_rate = neuroml.HHRate (type="HHExpRate",
rate="0.07per_ms",
midpoint="-65mv",
scale="-20mvV")

m_gate.reverse_rate = neuroml.HHRate (type="HHSigmoidRate",
rate="1lper_ms",
midpoint="-35mv",
scale="10mV")

h_gate.forward_rate = neuroml.HHRate (type="HHExpLinearRate",
rate="0.lper_ms",
midpoint="-55mV",
scale="10mvV")

h_gate.reverse_rate = neuroml.HHRate (type="HHExpRate",
rate="0.125per_ms",
midpoint="-65mv",

scale="-80mvV")

chan.gate_hh_rates.append (m_gate)
chan.gate_hh_rates.append (h_gate)

doc = neuroml.NeuroMLDocument ()
doc.ion_channel_hhs.append(chan)

doc.id = "ChannelMLDemo"

nml_file = './tmp/ionChannelTest.xml'
writers.NeuroMLWriter.write (doc,nml_file)

print ("Written channel file to: "+nml_file)

Validate the NeuroML
from neuroml.utils import validate_neuroml2

validate_neuroml2 (nml_file)

3.6 PyNN models

mmn

(continues on next page)

3.6. PyNN models

13

libNeuroML Documentation, Release 0.2.45

(continued from previous page)

Example to build a PyNN based network

mmwn

from neuroml import NeuroMLDocument
from neuroml import =

import neuroml.writers as writers
from random import random

#tHEA#F R AR AR A A F#A#### Build the network #HEHAFHAAFHAAFAAAFRAAFEAAFEAAFRAAAEA

nml_doc = NeuroMLDocument (id="TIafNet")

pynn0 = IF_curr_alpha (id="IF_curr_alpha pop_ IF_ curr_alpha", cm="1.0", i_offset="0.9", |
—tau_m="20.0", tau_refrac="10.0", tau_syn_E="0.5", tau_syn_I="0.5", v_init="-65", wv_
—reset="-62.0", v_rest="-65.0", v_thresh="-52.0")

nml_doc.IF_curr_alpha.append (pynn0)

pynnl = HH_cond_exp (id="HH_cond_exp_pop_HH cond_exp", cm="0.2", e_rev_E="0.0", e_rev_
—~I="-80.0", e_rev_K="-90.0", e_rev_Na="50.0", e_rev_leak="-65.0", g_leak="0.01",
—gbar_K="6.0", gbar_Na="20.0", i_offset="0.2", tau_syn_E="0.2", tau_syn_I="2.0", wv_
—init="-65", v_offset="-63.0")

nml_doc.HH_cond_exp.append (pynnl)

pynnSynn0 = ExpCondSynapse (id="psl", tau_syn="5", e_rev="0")
nml_doc.exp_cond_synapses.append (pynnSynn0)

nml_file = 'tmp/pynn_network.xml'
writers.NeuroMLWriter.write (nml_doc, nml_file)
print ("Saved to: "+nml_file)

Validate the NeuroML

from neuroml.utils import validate_neuroml?2

validate_neuroml2 (nml_file)

3.7 Synapses

mmn

Example to create a file with multiple synapse types

mmn

from neuroml import NeuroMLDocument
from neuroml import x

import neuroml.writers as writers
from random import random

(continues on next page)

14 Chapter 3. Examples

libNeuroML Documentation, Release 0.2.45

(continued from previous page)

nml_doc = NeuroMLDocument (id="SomeSynapses")

expOneSyn0 = ExpOneSynapse (id="ampa", tau_decay="5ms", gbase="1nS", erev="0mvV")
nml_doc.exp_one_synapses.append (expOneSyn0)

expTwoSyn0 = ExpTwoSynapse (id="gaba", tau_decay="12ms", tau_rise="3ms", gbase="1ns", |,
—erev="-70mV")
nml_doc.exp_two_synapses.append (expTwoSyn0)

bpSyn = BlockingPlasticSynapse (id="blockStpSynDep", gbase="1nS", erev="0mV", tau_rise=
—"0.1ms", tau_decay="2ms")

bpSyn.notes = "This is a note"

bpSyn.plasticity_mechanism = PlasticityMechanism(type="tsodyksMarkramDepMechanism",
—init_release_prob="0.5", tau_rec="120 ms")

bpSyn.block_mechanism = BlockMechanism(type="voltageConcDepBlockMechanism", species=
—"mg", block_concentration="1.2 mM", scaling_conc="1.920544 mM", scaling_volt="16.
—129 mv")

nml_doc.blocking_plastic_synapses.append (bpSyn)
nml_file = 'tmp/synapses.xml'

writers.NeuroMLWriter.write (nml_doc, nml_file)
print ("Saved to: "+nml_file)

Validate the NeuroML
from neuroml.utils import validate_neuroml2

validate_neuroml2 (nml_file)

3.8 Working with JSON serialization

One thing to note is that the JSONWriter, unlike NeuroMLWriter, will serializing using array-based (Arraymorph)
representation if this has been used.

mown

In this example an axon is built, a morphology is loaded, the axon 1is
then connected to the loadeed morphology. The whole thing is serialized
in JSON format, reloaded and validated.

mmwn

import neuroml
import neuroml.loaders as loaders
import neuroml.writers as writers

fn = './test_files/Purk2M9s.nml'
doc = loaders.NeuroMLLoader.load (fn)
print ("Loaded morphology file from: "+fn)

(continues on next page)

3.8. Working with JSON serialization 15

libNeuroML Documentation, Release 0.2.45

(continued from previous page)

#get the parent segment:
parent_segment = doc.cells[0] .morphology.segments|[0]

parent = neuroml.SegmentParent (segments=parent_segment.id)

#make an axon:

seg_id = 5000 # need a way to get a unique id from a morphology
axon_segments = []

for i in range (10):

p = neuroml.Point3DWithDiam (x=parent_segment.distal.x,
y=parent_segment.distal.y,
z=parent_segment.distal.z,
diameter=0.1)

d = neuroml.Point3DWithDiam (x=parent_segment.distal.x+10,
y=parent_segment.distal.y,
z=parent_segment.distal.z,
diameter=0.1)

axon_segment = neuroml.Segment (proximal = p,

distal = d,
parent = parent)
axon_segment.id = seg_id

axon_segment .name = 'axon_segment_' + str (axon_segment.id)

#now reset everything:
parent = neuroml.SegmentParent (segments=axon_segment.id)
parent_segment = axon_segment
seg_id += 1
axon_segments.append (axon_segment)
doc.cells[0] .morphology.segments += axon_segments
json_file = './tmp/modified_morphology. json'

writers.JSONWriter.write (doc, json_file)

print ("Saved modified morphology in JSON format to: " + json_file)

load it again, this time write it to a normal neuroml file
neuroml_document_from_json = loaders.JSONLoader.load(json_file)

print ("Re-loaded neuroml document in JSON format to NeuroMLDocument object")
nml_file = './tmp/modified_morphology_from_json.nml'
writers.NeuroMLWriter.write (neuroml_document_from_json,nml_file)

Validate the NeuroML

from neuroml.utils import validate_neuroml2

(continues on next page)

16 Chapter 3. Examples

libNeuroML Documentation, Release 0.2.45

(continued from previous page)

’validate_neurole(nml_file)

3.9 Working with arraymorphs

mmwn

Example of connecting segments together to create a
multicompartmental model of a cell.

In this case ArrayMorphology will be used rather than
Morphology - demonstrating its similarity and
ability to save in HDF5 format

mwn

import neuroml
import neuroml.writers as writers
import neuroml.arraymorph as am

p = neuroml.Point3DWithDiam (x=0,y=0,2z=0,diameter=50)
d = neuroml.Point3DWithDiam (x=50,y=0,2z=0,diameter=50)
soma = neuroml.Segment (proximal=p, distal=d)
soma.name = 'Soma'

soma.id = 0

#now make an axon with 100 compartments:

parent = neuroml.SegmentParent (segments=soma.id)
parent_segment = soma

axon_segments = []

seg_id =1

for i in range(100) :

p = neuroml.Point3DWithDiam (x=parent_segment.distal.x,
y=parent_segment.distal.y,
z=parent_segment.distal.z,
diameter=0.1)

d = neuroml.Point3DWithDiam (x=parent_segment.distal.x+10,
y=parent_segment .distal.y,
z=parent_segment.distal.z,
diameter=0.1)

axon_segment = neuroml.Segment (proximal = p,
distal = d,
parent = parent)

axon_segment.id = seg_id

axon_segment .name = 'axon_segment_' + str (axon_segment.id)
#now reset everything:

parent = neuroml.SegmentParent (segments=axon_segment.id)
parent_segment = axon_segment

seg_id += 1

axon_segments.append (axon_segment)

(continues on next page)

3.9. Working with arraymorphs

17

libNeuroML Documentation, Release 0.2.45

(continued from previous page)

test_morphology

test_morphology.
test_morphology.
test_morphology.

= am.ArrayMorphology ()
segments.append (soma)
segments += axon_segments
id = "TestMorphology"

cell = neuroml.Cell ()

cell.name = 'TestCell'

cell.id = 'TestCell'

cell .morphology = test_morphology

doc = neuroml.NeuroMLDocument ()
#doc.name = "Test neuroML document"

doc.cells.append(cell)
doc.id = "TestNeuroMLDocument"

nml_file = 'tmp/arraymorph.nml'
writers.NeuroMLWriter.write (doc,nml_file)
print ("Written morphology file to: "+nml_file)
Validate the NeuroML

from neuroml.utils import validate_neuroml?2

validate_neuroml2 (nml_file)

3.10 Working with Izhikevich Cells

These examples were kindly contributed by Steve Marsh

#from neuroml import NeuroMLDocument

from neuroml import IzhikevichCell

from neuroml.loaders import NeuroMLLoader
from neuroml.utils import validate_neuroml2

def load_izhikevich (filename="./test_files/Singlelzhikevich.nml") :
nml_filename = filename
validate_neuroml2 (nml_filename)
nml_doc = NeuroMLLoader.load (nml_filename)

iz_cells = nml_doc.izhikevich_cells
for i, iz in enumerate(iz_cells):
if isinstance(iz, IzhikevichCell):
neuron_string = "%d %s %5 ¢s $s g5 (gs)"
—~iz.d, iz.id)
print (neuron_string)
else:

o\

(i, iz.v0, iz.a, iz.b, iz.c,

o)

print ("Error: Cell 2d is not an IzhikevichCell" % i)

(continues on next page)

18 Chapter 3. Examples

libNeuroML Documentation, Release 0.2.45

(continued from previous page)

load_izhikevich ()

from neuroml import NeuroMLDocument

from neuroml import IzhikevichCell

from neuroml.writers import NeuroMLWriter
from neuroml.utils import validate_neuroml?2

def write_izhikevich (filename="./tmp/Singlelzhikevich_test.nml"):
nml_doc = NeuroMLDocument (id="Singlelzhikevich")
nml_filename = filename

iz0 = IzhikevichCell (id="iz0", v0="-70mV", thresh="30mv", a="0.02",
—65.0", d="6")

nml_doc.izhikevich_cells.append(iz0)

NeuroMLWriter.write (nml_doc, nml_filename)
validate_neuroml2 (nml_filename)

write_izhikevich ()

b="0.2",

C:"_

3.10. Working with Izhikevich Cells

19

libNeuroML Documentation, Release 0.2.45

20

Chapter 3. Examples

CHAPTER 4

Useful tools

Below is a list of tools which are built in or use Python and which would benefit from a standard library to access,
modify and save detailed neuronal morphologies. Developers from most of these initiatives are involved with the
libNeuroML project.

4.1 Neuronvisio

Neuronvisio is a Graphical User Interface for NEURON simulator environment with 3D capabilities.

http://neuronvisio.org (GitHub: https://github.com/mattions/neuronvisio)

4.2 PyNN

PyNN is a is a simulator-independent language for building neuronal network models.

http://neuralensemble.org/trac/PyNN

4.3 Morphforge

A Python library for simulating small networks of multicompartmental neurons

https://github.com/mikehulluk/morphforge

4.4 CATMAID

We reconstruct neuronal circuits (morphology in 3D, synaptic connectivity) as skeletons, surfaces, volumes in CAT-
MAID. We want to be able to export the data into an object model (data format), complement it with ion channel

21

http://neuronvisio.org
https://github.com/mattions/neuronvisio
http://neuralensemble.org/trac/PyNN
https://github.com/mikehulluk/morphforge

libNeuroML Documentation, Release 0.2.45

distribution of several types & synaptic mechanisms, and simulate the membrane voltage time series and do virtual
current injection etc. on standard simulators. All of this with a easy-to-use, intuitive Python API in a few lines of code.

http://www.catmaid.org

4.5 NEURON

A widely used simulation platform for biophysically detailed neurons and networks which has recently added a Python
interface.

http://www.neuron.yale.edu/neuron

For more information on Python & NEURON, see Andrew Davison’s guide here: http://www.davison.webfactional.
com/notes/installation-neuron-python/

4.6 MOOSE & Moogli

MOOSE is the Multiscale Object-Oriented Simulation Environment. It is the base and numerical core for large,
detailed simulations including Computational Neuroscience and Systems Biology.

http://moose.sourceforge.net
PyMOOSE

The latest version of MOOSE with a Python interface can be installed as follows:

svn co http://moose.svn.sourceforge.net/svnroot/moose/moose/branches/dh_branch moose
cd moose

make pymoose

sudo cp -r python/moose /usr/lib/python2.7/dist-packages

replacing /ust/lib/python2.7/dist-packages with the appropriate location for your Python packages. More details can
be found here.

An example of the HH squid mode can be run with:

cd Demos/squid/
python squid_demo.py

Moogli

Moogli (a sister project of MOOSE) is a simulator independent OpenGL based visualization tool for neural simu-
lations. Moogli can visualize morphology of single/multiple neurons or network of neurons, and can also visualize
activity in these cells.

http://moose.ncbs.res.in/moogli/

4.7 neuroConstruct

neuroConstruct generates native simulator code for NEURON, MOOSE and other simulators. It would be a great
benefit to be able to generate pure NeuroML descriptions of the model components and run (nearly) identical Python
code on these simulators to load the NeuroML and execute the simulations. This scenario is implemented already for
a limited number of model types by generating PyNN based scripts which can run on NEURON, Brian and NEST.

http://www.neuroConstruct.org

22 Chapter 4. Useful tools

http://www.catmaid.org
http://www.neuron.yale.edu/neuron
http://www.davison.webfactional.com/notes/installation-neuron-python/
http://www.davison.webfactional.com/notes/installation-neuron-python/
http://moose.sourceforge.net
http://moose.sourceforge.net/component/option%2ccom_wrapper/Itemid%2c86/index.html
http://moose.ncbs.res.in/moogli/
http://www.neuroConstruct.org

CHAPTER B

Developer documentation

5.1 How to contribute

To contribute to libNeuroML you need a github account then you should fork the repository at https://github.com/
NeuralEnsemble/libNeuroML

Note: Fork is not a bad thing on a Github workflow. Fork basically means you have your own repository which is
connected with upstream (the main repository from which official releases will be made). You can contribute back to
upstream using Pull Request

5.1.1 Setting up

Have a quick view at the doc: http://help.github.com/fork-a-repo/

1. Fork the repo (done on github website). Now you should have a libNeuroML under you username (mine for
example sits happily here: https://github.com/mattions/libNeuroML)

2. Clone your repo locally (This is done once!)

git clone git@github.com:_username_/libNeuroML.git

3. Add upstream as remote branch which you follow

cd libNeuroML
git remote add upstream https://github.com/NeuralEnsemble/libNeuroML.git
git fetch upstream

You can check which branch are you following doing:

git branch -a

you should have something like:

23

https://github.com/NeuralEnsemble/libNeuroML
https://github.com/NeuralEnsemble/libNeuroML
http://help.github.com/send-pull-requests/
http://help.github.com/fork-a-repo/
https://github.com/mattions/libNeuroML

libNeuroML Documentation, Release 0.2.45

mattions@triton:libNeuroML (master*)$ git branch -a
* master
remotes/origin/HEAD —-> origin/master
remotes/origin/master
remotes/upstream/master

This means you are currently on branch master and there are two remotes branches origin/master which is
your origin master (the branch where you master gets pushed automatically and upstream/master which is the
upstream master (the NeuroEnsemble one).

5.1.2 Sync with upstream

Before starting to do some work, I'll suggest to get the latest development going on the upstream repo

git fetch upstream
git merge upstream/master

If there are no conflict, you are all set, if there are some you can solve them with

git mergetool

which will fire up your favourite merger to do a 3-ways merge.

3-ways means you will have your local file on your left, the remote file on your right, and the file in the middle is the
conflicted one, which you need to solve.

A nice 3-ways merger makes this process very easy, and merging could be fun. To see what you have currently
installed just do git mergetool

This is my response

mattions@triton:libNeuroML (masterx)$ git mergetool

merge tool candidates: meld opendiff kdiff3 tkdiff xxdiff tortoisemerge gvimdiff
—diffuse ecmerge pédmerge araxis bc3 emerge vimdiff

No files need merging

[Meld] (http://meldmerge.org/) is the first of the list and would be automatically picked up by git mergetool.
Chose your favourite.

Well done, now you are all set to do some cool work!

5.1.3 Working locally on a dedicated branch

Now you can work on your repo. The best way to do it is to create a branch with a descriptive name which indicate
what are you working on.

For example, just for the sake of this guide, I’'m going to close #2

git checkout -b fix-2

Now, I'm working on a different branch from master which is fix-2 This will come handy in a minute.

hack hack hack
git commit -am "some decent commit message here"

Now that I found how to fix this issue, I just want to push my branch online and open a pull request.

24 Chapter 5. Developer documentation

http://meldmerge.org/
https://github.com/NeuralEnsemble/libNeuroML/issues/2

libNeuroML Documentation, Release 0.2.45

1. Push the branch online

git push origin fix-2

2. Open the pull request
Here I want to open a pull-request to integrate £1x-2 into upstream/master
To do that I click Pull-Request and automatically a new Issue #3 is created where it is possible to comment.

If your code is not ready to be include, you can update the code on your branch and automatically the Pull Request
will sync to the latest commit, so it is possible to change it after the Pull Request is started. Don’t be scare to open
one.

5.1.4 Release process
libNeuroML is part of the official NeuroML release cycle. As of 1/09/13 we are still ironing out the proecure. When
a new libNueroML release is ready the following needs to happen:

» Update version number in setup.py

* update version number in doc/conf.py

¢ update release number in doc/conf.py (same as version number)

* update changelog in README.md

» merge development branch with master (This should happen via pull request - do not do the merge yourself even
if you are an owner of the repository.

¢ push latest release to PyPi

5.1.5 Miscellaneous

* Nice guide about git
* Quick reference for git
* Remember to tell git your name, so we know who contributes!

* Always known in which branch you are using this bash function

5.2 Implementation of XML bindings for libNeuroML

The GenerateDS Python package is used to automatically generate the NeuroML XML-bindings in libNeuroML from
the NeuroML Schema. This technique can be utilized for any XML Schema and is outlined in this section. The addition
of helper methods and enforcement of correct naming conventions is also described. For more detail on how Python
bindings for XML are generated, the reader is directed to the GenerateDS and libNeuroML documentation. In the
following subsections it is assumed that all commands are executed in a top level directory nml and that GenerateDS is
installed. It should be noted that enforcement of naming conventions and addition of helper methods are not required
by GenerateDS and default values may be used.

5.2. Implementation of XML bindings for libNeuroML 25

https://github.com/NeuralEnsemble/libNeuroML/issues/3
http://rogerdudler.github.com/git-guide/
http://gitref.org/
http://help.github.com/set-your-user-name-email-and-github-token/
https://gist.github.com/2051095

libNeuroML Documentation, Release 0.2.45

5.2.1 Correct naming conventions
A module named generateds_config.py is placed in the nml directory. This module contains a Python dictionary called

NameTable which maps the original names specified in the XML Schema to user-specified ones. The NameTable
dictionary can be defined explicitly or generated programmatically, for example using regular expressions.

5.2.2 Addition of helper methods
Helper methods associated with a class can be added to a Python module as string objects. In the case of libNeuroML

the module is called helper_methods.py. The precise implementation details are esoteric and the user is referred to the
GenerateDS documentation for details of how this functionality is implemented.

5.2.3 Generation of bindings

Once generateds_config.py and a helper methods module are present in the nml directory a valid XML Schema is
required by GenerateDS. The following command generates the nml.py module which contains the XML-bindings:

$ generateDS.py —-o nml.py —-use-getter-setter=none —--user-methods=helper_methods,
—NeuroML_v2betal.xsd

The -o flag sets the file which the module containing the bindings is to be written to. The —use-getter-setter=none
option disables getters and setters for class attributes. The —user-methods flag indicates the name of the helper methods
module (See section “Addition of helper methods”). The final parameter (NeuroML_v2betal.xsd) is the name of the
XML Schema used for generating the bindings.

modules

5.3 Indices and tables

* genindex
¢ modindex

e search

26 Chapter 5. Developer documentation

	Introduction
	NeuroML
	Serialisations

	Installation
	Requirements
	Install libNeuroML via pip
	Install using a local copy of libNeuroML source
	Run an example
	Unit tests

	Examples
	Creating a NeuroML morphology
	Loading and modifying a file
	Building a network
	Building a 3D network
	Ion channels
	PyNN models
	Synapses
	Working with JSON serialization
	Working with arraymorphs
	Working with Izhikevich Cells

	Useful tools
	Neuronvisio
	PyNN
	Morphforge
	CATMAID
	NEURON
	MOOSE & Moogli
	neuroConstruct

	Developer documentation
	How to contribute
	Implementation of XML bindings for libNeuroML
	Indices and tables

